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Abstract—One of the main goals of neutron data analysis
is to determine the internal structure of materials from their
neutron scattering profiles. These structures are defined by a
crystallographic class label and a set of real-valued parameters
specific to that class. Existing structure analysis approaches
use computationally expensive loop refinements methods that
routinely take days, and even weeks, to complete. Additionally,
the outcomes often rely on the fidelity of physical models that
are computed during the refinement process.

Here, we evaluate the feasibility of using trained data-driven
machine learning models as fast and accurate substitutes for
these expensive methods. We report on the efficacies of a variety
of ML models, including convolutional neural networks, auto-
encoders, random forests and combinations thereof, in addition
to techniques such as transfer learning in predicting these
structural parameters. Specifically, we evaluate two categories
of models which we call class-conditional and integrated.
The first relies on a two-stage inference pipeline in which
a crystallographic class label is first predicted followed by
regression to predict the length/angle parameters. In the second
category, the classification and regression tasks are performed
as a single learning task. We train these models on synthetically
generated data, validate them against experimental observa-
tions and show that integrated models outperform their class-
conditional counterparts opening up the possibility of deep
learning models as a viable alternative to existing resource-
intensive loop refinement methods in neutron data analysis.

I. INTRODUCTION

The ability to design customized material with targeted
mechanical and chemical properties relies on a detailed
understanding of their internal structure. Neutron scattering
is a state-of-the-art experimental technique that allows sci-
entists to probe material structures with atomic resolutions
by scattering beams of neutrons from them. The scattered
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neutrons are collected using different types of detectors and
represented in a two-dimensional scattering intensity plot
called a Bragg profile. One of the major tasks in neutron data
analysis is to solve the inverse problem of determining the
internal structure of the target material based on its observed
Bragg profile.

A. Motivation

Existing methodologies to solve the aforementioned in-
verse problem largely rely on loop refinement techniques
wherein a forward physics-based model uses an initial
guess for the internal structure to generate a scattering
Bragg profile which is then compared with the observed
pattern. If the patterns are found to match, based on a pre-
defined definition of similarity, the initial guess is assumed
to accurately mirror the internal structure of the material.
Else, the guess is modified and the entire process repeated.
In practice, this loop refinement technique is very time-
consuming as the number of iterations required to converge
to an acceptable level of similarity between the computed
and observed Bragg profiles vary widely between samples.
More often than not, it requires hundreds and thousands
of iterations to converge and routinely takes many days,
even weeks, to complete. The overall time-to-solution and
the quality of results from loop refinement methods also
depend on the fidelity of the forward model used to gen-
erate the Bragg profiles within the loop iterations. Higher
fidelity usually translates to better quality of solutions but
requires even longer time-to-solution. On the other hand,
shorter time-to-solutions with low-fidelity forward models
compromise quality of solutions. The main motivation of
the work presented here is to evaluate alternative data-
driven approaches to accelerate this discovery process while
circumventing these trade-offs inherent in loop refinement
methods.

B. Definitions

Crystalline materials belong to seven crystallographic
classes and 14 Bravais lattices [1] as shown in Fig. 1. Each
Bravais lattice is characterized by a set of unit cell lengths,
denoted by the parameter set {a, b, c}, and unit cell angles,
denoted by the parameter set {α, β, γ}. Depending on
the crystallographic class of the material, these parameters
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satisfy unique constraint relations, as shown in Fig. 1.
Therefore, given the Bragg profile of a material sample, a
trained ML model needs to predict the crystallographic class
to which it belongs as well as the unit cell lengths and angles
that satisfy the relations conditioned on that class.

Figure 1: The 14 Bravais lattices (7 crystal classes) compat-
ible with three-dimensional translational periodicity. [2]

C. Challenges

This paper evaluates the efficacy of replacing loop re-
finement methods with pre-trained machine leaning (ML)
models as inference engines for predictions of the structure
parameters of material samples based on the information
embedded in their Bragg profiles. However, data-driven ML
approaches for this problem encounters a host of chal-
lenges. One of the major challenges in adopting an ML
approach is the paucity of labeled neutron data with which to
train ML models. Since neutron experiments are extremely
resource-intensive and cannot be carried out on-demand,
the amount of observed experimental data (Bragg profiles)
that are reliably labeled is very limited. On the other hand,
accurately training ML models requires large amounts of
training data. Another challenge is that the number and
kinds of parameters to be predicted differ from one material
to another depending on its crystallographic class. Thus,
a ML model should not only be able to predict the class
of the material but also the correct set of cell length/angle
parameters that correspond to that class. Additionally, exper-
imental observations collected from neutron detectors are
mixed in with background noise that are unique to each

detector experiment. Identifying the signal from the noise
and using this information to wrangle the data for more
accurate model training poses yet another challenge. Finally,
the sampling space spanned by the structural parameters
{a, b, c} and {α, β, γ} grows exponentially with the number
of parameters that define each symmetry class.

D. Related Work

ML-driven methods for structure determination from neu-
tron scattering data is an emerging area of research. Re-
cently, auto-encoders have been demonstrated to be effective
in extracting spin Hamiltonians from neutron scattering data
[3]. Principal component analysis with an artificial neural
network was shown to predict neutron scattering cross-
sections to constrain the parameters of a pre-existing model
Hamiltonian in [4]. An unsupervised ML approach to study
phase transitions in single crystal x-ray diffraction data
was reported in [5]. An ML-based approach to classify
the local chemical environment of specific metal families
from the simulated K-edge XANES of a large number
of compounds was reported in [6]. The use of ML in
understanding neutron physics is beginning to gain greater
acceptance as highlighted recently in [7]. To our knowledge,
the results reported here represent one of the first efforts
in this direction and makes multiple advances beyond the
findings based on shallow ML models presented by the
authors in [8].

E. Contributions

The work presented here makes multiple advances in the
application of ML models to scientific knowledge discov-
ery in the neutron sciences. Specific contributions are the
following:

• We demonstrate that deep learning models perform
significantly better than shallow learning models [8] in
predicting structure parameters from neutron scattering
data.

• We show that transfer learning techniques can be gain-
fully leveraged to build unified deep learning mod-
els that predict both the class labels and the class-
dependent parameters from Bragg profiles with accept-
able levels of accuracy.

• We present new heuristic methodologies to control the
effects of background noise in the learning task.

• We conclusively demonstrate that an integrated model
that predicts the class as well as the class-specific
parameters in a single learning task performs better
than class-conditional models which learn to predict
the class and the class-dependent parameters as separate
learning tasks.

Use of ML models for structure prediction from neutron
scattering data is a very nascent field and, to the best of our
knowledge, the methodology and results presented here have
not been reported before. The rest of the paper is organized
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as follows. Section II provides a brief overview of the type
of machine learning models used in this study. Section III
describes the data generation methods and specifications.
In Section IV, the class-conditional and integrated models
are described followed by the results of our experiments in
Section V. We draw some conclusion in Section VI.

II. PRELIMINARIES

In this section, the network models used in the remainder
of the paper are briefly described.

A. Random Forest

Random forest (RF) is a type of ensemble predictor
that aggregates results of distinct decision trees to solve
classification or regression problems [9]. The aggregation
of individual results improves the performance of the model
reducing the variance in the predictions and leading to good
generalization over data not used for training. More about
RFs and their implementation can be found in [8]–[11].

B. Convolutional Neural Network:

A convolutional neural network (CNN) [12] is a feed-
forward neural network composed of convolution and pool-
ing layers. Each node n in a convolutional layer i computes
the following operation:

yin = σi,n

Mi∑
m

wi
n,m ∗ xi

m + bin


where xi

m represents the m-th input map at layer i; wi
n,m,

bin and σi,n represent node parameters, namely, the m-th
convolutional kernel, the bias and the activation function,
respectively; M i are the number of input maps at layer i
(which correspond to the output maps at layer i− 1, i.e. the
number of nodes at layer i−1); and ∗ denotes a convolutional
operation. The activation function is usually a rectified linear
unit (ReLU) which corresponds to the following operation
ReLU(ν) = max(0, ν). The pooling layer i reduces the
dimensionality of the input pattern by averaging (or taking
the maximum) over a fixed neighborhood structure in the
input pattern, while sweeping the pattern with a consistent
stride, and making the model more robust to local variations
in the input. Note that the size of the stride used determines
the extent of dimensionality reduction, e.g. if the pooling
uses a stride of 2 the dimensionality is reduced to half and
so on.

As any other neural network model, the CNN network
is trained to produce a desired output by minimizing a
loss function over the training data set. The minimization
determines a set of model parameters, corresponding to
the values of the convolutional kernels and the biases,
that better approximate the desired output. However, since
the node operations are based on convolutions that take
into account the entire signal, and since the convolutional

kernels are compactly supported kernels of low dimension-
ality (typically 3-11 components in 1D), CNNs are able
to capture local invariant patterns in the data, which are
optimal throughout the input signal. This also implies that
the number of parameters is much less than it would be
required if the layer was a regular (i.e. densely) connected
layer, thereby yielding a more compact representation. In
summary, CNN models capture local correlations using a
much lower number of parameters than regular densely
connected neural networks.

C. Auto-Encoder

An auto-encoder consist of two parts: an encoder and
a decoder [13], [14]. The encoder maps the input into a
hidden (latent) representation. The decoder is able to use
the hidden representation and map it back to the input space.
Auto-encoders are used for many applications. One possible
application is dimensionality reduction: the encoder maps
the input pattern to a latent representation with a smaller
dimensionality than the input space, while the decoder tries
to minimize the error in reconstructing the original pattern
when mapping the latent representation back to the input
space. Thus, an auto-encoder is a type of unsupervised
model that can be trained by minimizing the error between
input and output patterns. Since the error of reconstruction
from a latent representation is minimized, it is deemed that
the latent representation captures the essential features of
the pattern, and since the latent representation has a smaller
dimensionality than the input space, the auto-encoder trained
in this way can be regarded as a dimensionality-reduction
model. A convolutional auto-encoder (CAE) uses CNNs to
build the encoder, the decoder, or both [15].

III. DATA GENERATION

To address the challenge of scarcity of labeled data, the
six-dimensional parameter space, collectively denoted by
Y , where Y represents the set {a, b, c, α, β, γ} of unit cell
parameters, is uniformly sampled (within appropriate ranges
established from domain knowledge) and a Bragg profile
is computed at each sampled point using the Generalized
Structure Analysis System (GSAS), a widely used structure
refinement software in the neutron and X-ray crystallography
community [16]. GSAS-II requires two sets of input specifi-
cations to simulate a diffraction pattern: the crystallographic
class information and the instrument description. The first
allows determination of the appropriate physics-driven con-
straint equations corresponding to the symmetry class, while
the second allows modelling of the diffractometer physics
used to generate the diffraction profile.

In this preliminary work, we limit the scope of our study
to a perovskite material called barium titanate (BaTiO3).
Since barium titanate, without doping, exists only in three
of the fourteen possible lattice groups, labeled training data
sets are generated only for the tetragonal, trigonal and cubic
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crystallographic symmetry classes using GSAS-II. The in-
strument specification used was for the NOMAD instrument
[17] to maintain consistency with the NOMAD-generated
experimental data against which the model predictions are
subsequently validated.

Diffraction patterns from barium titanate in cubic, trigonal
and tetragonal crystallographic classes were generated to
build the labeled training set. For cubic class, a was sampled
in the range [3.5, 4.5] with step 10−3. For the trigonal class,
a was sampled in the range [3.8, 4.2] with step 10−3, while
α in the ranges [60◦, 89.8◦] and [90.5◦, 120◦] with step 0.5◦.
For the tetragonal class, a, c were sampled in the range [3.8,
4.2] with step 10−3. We used a time-of-flight (ToF), in the
range [1,360µs, 18,919µs] with step 0.0009381µs. Sweeping
over these ranges yields a collection of diffraction patterns.
Each diffraction pattern X is a set of 2807 2-tuples (x, I(x))
where x is the time-of-flight (ToF) and I(x) is the GSAS-
generated scattering profile. Table I lists the relations for the
three symmetry classes used in this study.

Table I: Training Data Set of Labeled Neutron Diffractions.

Class Parameters Samples (n) Size
Cubic a = b = c 1,000 43 MB

(predict a)
Trigonal a = b = c 47,719 2 GB

(predict a, α) α = β = γ 6= 90◦

Tetragonal a = b 6= c 160,400 6.8 GB
(predict a, c) α = β = γ = 90◦

Depending on the particular combination of crystallo-
graphic symmetry and structural parameters, each labeled
sample in the training sets required between 2s to 30s
to compute. An MPI-based parallel framework [8] was
developed to generate the diffraction patterns in a concurrent
and distributed manner.

IV. MODELS

Recall that the cumulative task of predicting the structural
parameters consists of predicting a class label as well as the
unit cell parameters corresponding to that class. The first
is a classification task while the second a regression task.
As mentioned in Section I, the number of cell parameters
to be predicted varies with the predicted class. To address
this challenge of conditional predictions, two categories of
models were tested and their accuracies compared. In the
first category, called class-conditional models (denoted by
C), the overall prediction is carried out in a sequence of
two independent learning tasks. In the first task, a classifier
predicts the crystallographic symmetry and, in the second,
a regressor predicts the cell lengths/angles. The second
category, called integrated or multi-task models (denoted by
I), are designed to predict the symmetry class and the cell
lengths/angles in a single ML task. Central to both categories
of models is the classifier which predicts the crystallographic
class. This is described next.

A. Classifier for Crystallographic Symmetry

5000 10000 15000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Trigonal

Figure 2: Example of Intensity vs Time of Flight curves
(Bragg profile) used as training data.

A 1D convolutional neural network was trained on data
generated by GSAS-II (described in Section III) to distin-
guish training samples belonging to the tetragonal, trigonal
and cubic classes. Specifically, the CNN was designed to
accept an input vector of length 2,807 representing the nor-
malized intensities of each curve and predict (classify) the
crystallographic symmetry group it belongs to. An example
of an intensity vs. time of flight (ToF) curve (Bragg profile)
is shown in Fig. 2. The neural network structure that was
trained is as follows:

• Feature Learner
– 1D Convolution (16 learned filters, kernel width=3,

stride=1)
– 1D Max Pooling (kernel width=2, stride=2)
– 1D Convolution (32 learned filters, kernel width=4,

stride=2)
– 1D Max Pooling (kernel width=2, stride=2)
– Fully Connected (256 hidden neurons, w/ReLU

activation)
• Fully Connected (3 output neurons, w/Softmax)

Training used stochastic gradient descent with a fixed learn-
ing rate of 0.001, weight decay of .005, momentum of 0.9,
and a batch size of 90. Since the number of examples in
each of the three groups is not balanced (128K Tetragonal
examples, 38K Trigonal examples, and only 800 cubic
examples) each mini-batch was constructed by randomly
sampling an equal number of examples from each class, i.e.
30 examples from each class. The training and validation
losses during training is shown in Figure 3.
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Figure 3: Training and validation losses of the classifier.

B. Class-Conditional Models

1) Class-Conditional Random Forest, C1: Here three dif-
ferent class-conditional RF models were trained. Each model
was trained independently to predict the unit cell parameters
for cubic, tetragonal and trigonal symmetries, respectively.
Hence, given an input corresponding to a diffraction pattern
and given the corresponding symmetry classification, the
appropriate regression model is trained and used afterwards
for prediction. The cubic model is trained to predict a, the
tetragonal model is trained to predict a and c and the trigonal
model is trained to predict a and α. In order to control
the complexity of the RF and to prevent the models from
overfitting, we limited the depth of the individual trees and
set a maximum number of individual trees in the forest.

2) Transfer Learner, C2: It is clear from Fig. 3 that the
fine-tuned classifier discussed in Section IV-A classifies the
cubic, tetragonal and trigonal classes with high accuracy in
the synthetic data set. The class-conditional model discussed
here, called the transfer learner, leverages the features
(learnt with high accuracy) by the classifier to regress the
continuous parameters Y . Note that for the tetragonal class,
Y = {a, c, 90◦}; for the trigonal class, Y = {a, a, α}; and
for cubic, Y = {a, a, 90◦}. For each Bragg profile (training
sample), the trained classifier from Section IV-A is run and
256 features learned by the first fully connected layer is used
as the input features of a fully connected regressor model
to estimate the continuous parameter set Y updating only
the weights of this fully connected during back propagation.
Note that the regressor still trains separately conditioned on
the predicted class.

3) Deep Regressor, C3: As a natural extension to the
transfer learner model, a second class-conditional model is
evaluated in which the last layer is replaced with a linear
layer to produce continuous outputs Y using mean square
error to compute the loss and update the weights of all the
layers during back-propagation and not just the weight of
the linear regressor. Note that this too is a class-conditional
model, which we refer to as deep regressor. In this model,

the weights from the classifier are only used to initialize the
corresponding layers in Deep Regressor.

C. Integrated Models

Recall that integrated models predict both the class labels
and the regression values of the unit cell lengths/angles in
a single prediction task. Accordingly, the integrated models
predict four outputs, namely, the class label, S (0: cubic, 1:
tetragonal and 2: trigonal), the lattice parameter a, the lattice
parameter c and the angle parameter α. Note that these four
predictions form the minimal set of parameters necessary
to determine the structures of the three crystal symmetries
studied here (see Table I).

1) Deep MultiTask, I1: This multitask network, referred
to as Deep MultiTask, uses the output from the first fully
connected layer of the classifier from Section IV-A to train
both a regressor (using softmax) in addition to the original
classification task. The classifier updates the weights using
the error obtained from cross entropy loss while the regressor
uses MSE loss for every batch.

2) Random Forest, I2: Instead of building a class-
conditional regression model for each of the symmetries,
random forests were used to train an integrated model. In
this case a unique regression model with four outputs is
trained with the goal of predicting the class of the crystal
symmetry and the unit cell parameters (a, c and α) for a
given input corresponding to a Bragg profile.

3) CAENN, I3: In order to construct features sensitive to
local correlations in Bragg profiles, a deep learning model
based on CNN was implemented. Specifically, a 1D CNN
auto-encoder (CAE) was combined with a neural network
(NN) regressor. The CAE helps to find a good latent repre-
sentation for a given Bragg profile. This latent representation
is used as the input to an integrated NN-based regressor that
predicts the crystal symmetry and the unit cell parameters.
Since all the Bragg profiles share the same x component
(ToF), each profile, though two-dimensional, can be regarded
as a one-dimensional pattern with the understanding that
the first dimension is common to all the samples. As such,
a 1D symmetrical bottle-neck CAE suffices. The CAE is
designed with a symmetrical bottle-neck architecture of
4 layers (total), the thin part of which corresponds to a
latent representation. Note that some symmetrical bottle-
neck auto-encoders are built with tied weights, but in our
case, we learned different (not-tied) weights for encoder and
decoder. Finally, an integrated NN regressor with 4 densely
connected layers and ReLU activations is built to predict
simultaneously the crystal symmetry and unit cell parameters
(a, c and α) for a given Bragg profile.

V. RESULTS

The models described above were trained using data gen-
erated by GSAS-II, as described in Section III. These trained
models were then used as inference engines to predict
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Figure 4: Classfier, class-conditional models (C2 and C3) and integrated models (I1 and I3).

the structure parameters using experimental Bragg profiles
collected using the NOMAD diffractormeter for barium
titanate samples. The predicted parameters were then used as
inputs to the GSAS-II simulator and the resulting simulated
Bragg profile was compared with the experimental Bragg
profile for validation. The remainder of this section presents
the results of these experiments using models described in
the previous section.

A. Metrics

Since we evaluate the performance of class conditional
and integrated models on the parameters a, c and α, we use
Mean Squared Error (MSE).

MSE(Y, Ŷ ) =
1

n

3∑
i=1

||Yi − Ŷi||22 , (1)

The vectors Yi, Ŷi ∈ Rn represent the ground truth and
predicted value of the parameters a, c and α, respectively.
The mean squared error reported on class conditional models
and integrated models are different with respect to the
number of samples n. In the case of class conditional
models, Y ∈ Rn×3, where n is the total test samples for
each of the class as detailed in Section III. For an integrated
model, however, n = 41, 824 includes samples from all three
symmetric classes, viz., cubic, trigonal and tetragonal.

B. Synthetic Data

The simulated diffraction patterns were split into two sets:
80% for training and 20% for testing. This corresponds to
the following sizes:

• Cubic: 800 diffraction patterns for training and 200 for
testing.

• Trigonal: 38,175 diffraction patterns for training and
9,544 for testing.

• Tetragonal: 128,320 diffraction patterns for training and
32,080 for testing.

• Integrated: 167,295 diffraction patterns for training and
41,824 for testing.

All the data was pre-processed in the same way. Specifi-
cally, each histogram was vertically shifted to the minimum
value of 0 and then scaled appropriately to the maximum
value of 1. The following subsections describe the different
models that were trained and the results of evaluating them
on the test sets (samples not seen during training).

1) Random Forest (RF): The following parameters were
used to train the RF models. Cubic: a RF of 150 trees with
maximum depth of 50, trigonal: a RF of 200 trees with
maximum depth of 50 and tetragonal: a RF of 200 trees with
maximum depth of 50. The integrated model corresponds to
a RF of 250 trees with maximum depth of 50.

For training a random subsample over the training set
was used (cubic: 792; trigonal: 6,500; tetragonal: 20,500
and integrated: 27,800 diffraction patterns). Note that to
reduce the noise, the left-most and the right-most ends of the
diffraction patterns were discarded, specifically 256 and 55
pairs of (x, I(x)) values at the low and the high TOF (x)
ends, respectively, resulting in training patterns of dimen-
sionality 2,496. This heuristic is an ad hoc attempt motivated
by the experimental patterns available, which exhibit rapid
oscillations at the low TOF end and a saturated zero-signal
at the high TOF end. Evaluation of other strategies to reduce
noise at pre-processing stages will be part of future work.

2) Transfer Learning: Note that the two class-conditional
models, C2 and C3, and the integrated model, I1, are all
variants of transfer learning approaches. These three models
were trained using a batch size of 512 and trained for 500
epochs. In order to produce balanced classes, 800 cubic
samples were used with replacement in every epoch. We
used ADAM optimizer with learning of 10−3 for backpro-
pogation.

3) CAENN: The following parameters were used to train
the CAENN model. Note that the tails of the Bragg profiles
are discarded yielding a 2,496 dimensionality for the input
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Figure 5: Examples of CAE reconstruction for test samples. For each class, two random samples were reconstructed.

patterns like in the RF model.
CNN Auto-Encoder: The 1D CAE is designed with a

symmetrical bottle-neck architecture of 4 layers total: 2 for
the encoder and 2 for the decoder. The structure that was
trained for the encoder is the following:

• 1D Convolution (9 learned filters, kernel width=15,
stride=1) followed by ReLU activation.

• 1D Max Pooling (kernel width=2, stride=2)
• 1D Convolution (2 learned filters, kernel width=7,

stride=1) followed by ReLU activation.
• 1D Max Pooling (kernel width=2, stride=2)

The decoder is a symmetrical reflection of this structure,
with weights that are also learned during CAE training.

A total of 34,100 diffraction patterns from the three differ-
ent symmetries were used for training. This is about 20% of
the tetragonal and trigonal training sets and 800 diffraction
patterns of the cubic symmetry. The CAE was trained for
250 epochs, to minimize the mean absolute error function,
using an Adaptive Moment Estimation (ADAM) [18] opti-
mizer with a learning rate of 10−3 and a batch size of 20.
The best model over 5-fold cross validation evaluated over
the testing set is selected as the CAE model. The testing
MSE for this CAE is 85.34. Randomly selected examples
of reconstructions for samples in the test set for each of
the three crystal symmetries cubic, trigonal and tetragonal
evaluated using the best CAE model are shown in Figure 5.

NN Regressor: The integrated NN regressor has a four-
layer structure with 150, 70 and 20 nodes in the intermediate
layers and 4 outputs. The random subsample of 34,100
diffraction patterns that was used for training the CAE is also
used to train the NN. The regressor was trained to minimize
an `2-regularized MSE function with 10−4 regularization
weight, during 500 epochs, using an ADAM optimizer with
an initial learning rate of 10−3 and a decaying factor of 0.1
on epochs 100, 250 and 400, and a batch size of 20.

4) Model Performance: Table II and Table III summarize
the performance of the different models on the synthetic
dataset. Table II shows that class conditional RF performs
better in the case of cubic class which requires prediction
of only one parameter a. However, when multiple labels
need to be predicted, as in trigonal and tetragonal classes,

the class conditional Deep Regressor model performs better.
The CAENN integrated models outperformed both the RF
and Multitask networks. The CAENN and Multitask models
were trained with 500 epochs each. A longer training of the
models has the potential to further improve the results.

Table II: MSE: Class Conditional Models – Synthetic Test Set.
Transfer learning based models C2 and C3 outperform RF for
multilabel scenarios.

Model MSE
Symmetry RF (C1) Transfer (C2) Deep (C3)

Learning Regressor
Cubic 1.20× 10−6 4.71×10−4 1.00× 10−5

Trigonal 8.14×10−4 1.01× 10−2 1.40× 10−5

Tetragonal 5.84×10−6 5.18× 10−4 2.60× 10−5

Table III: MSE: Integrated Models – Synthetic Test Set. Integrated
models perform better than class conditional models

Model MSE
RF (I1) 1.48× 10−4

Multitask(I3) 1.90× 10−5

CAENN (I2) 5.96× 10−6

C. Experimental Data

Experimental neutron powder diffraction data of barium
titanate as a function of temperature was collected on
the NOMAD instrument housed in the Spallation Neutron
Source at Oak Ridge National Laboratory. In all cases,
”traditional” structure analysis was carried out to obtain
the structural parameters. The crystallographic class and the
lattice parameter set {a, c, α} were used as labels and the
machine learning models were evaluated against this ground
truth set. A total of 15 experimental diffraction patterns were
evaluated – one belonging to the trigonal symmetry class and
the remaining fourteen belonging to the tetragonal class.

1) Data Pre-processing: As mentioned in Section I,
experimental signals contain detector-specific background
noise. Background signals in neutron detectors originate
from a variety of sources (diffuse scattering, air scattering,
detector readout noise and others) and need to be subtracted
out to improve the signal-to-noise ratio. A second-order

Authorized licensed use limited to: LANL Research Library. Downloaded on October 12,2021 at 23:35:20 UTC from IEEE Xplore.  Restrictions apply. 



1154

2500 5000 7500 10000 12500 15000 17500 20000
0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Background
Processed

(a) Trigonal

2500 5000 7500 10000 12500 15000 17500 20000
0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Background
Processed

(b) Tetragonal 1

2500 5000 7500 10000 12500 15000 17500 20000
0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Background
Processed

(c) Tetragonal 2

2500 5000 7500 10000 12500 15000 17500 20000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Prediction

(d) MultiTask Trigonal

2500 5000 7500 10000 12500 15000 17500 20000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Prediction

(e) MultiTask Tetragonal 1

2500 5000 7500 10000 12500 15000 17500 20000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Prediction

(f) MultiTask Tetragonal 2

2500 5000 7500 10000 12500 15000 17500 20000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Prediction

(g) CAENN Trigonal

2500 5000 7500 10000 12500 15000 17500 20000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Prediction

(h) CAENN Tetragonal 1

2500 5000 7500 10000 12500 15000 17500 20000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental
Prediction

(i) CAENN Tetragonal 2

Figure 6: Examples of Integrated model predictions for experimental data. Comparison of experimental measurements and
diffraction patterns generated from predicted unit cell parameters using Multitask and CAENN. Top: pre-processing of
the first three experimental patterns. The ground truths for trigonal are a = 3.9968 and α = 89.84◦, Tetragonal 1 are
a = 3.9857 and c = 4.0277, and for Tetragonal 2 a = 3.9870 and c = 4.0279. Center left: Multitask (MT) trigonal
prediction for a = 3.9272 and α = 89.3611. MT tetragonal 1 predicted a = 3.9318, c = 4.0414 and MT tetragonal 2
predicted a = 3.9510, c = 4.0752. Bottom left: trigonal, prediction a = 4.0094 and α = 97.61◦. Bottom center: tetragonal
prediction a = 3.9851 and c = 4.0358. Bottom right: tetragonal prediction a = 4.0196 and c = 4.0210.

Chebyschev polynomial of the first kind is used to model
a NOMAD-specific background signal for each experimen-
tally observed diffraction pattern independently. A signal
threshold in the experimental Bragg profile is adjusted such
that the area under the profile closely matches (differs by less
than 10−4) with that under the Chebyschev polynomial. This
polynomial is then subtracted out from the original experi-
mental signal. Preliminary results indicate that this method
is more robust to experimental conditions than previous
quantitative measures used. In addition to the background
corrections, the x-axis (ToF) also needs to be adjusted for
better consistency between the simulated and experimentally
collected Bragg profiles. For this, each (x, I(x)) pair in
the experimental diffraction pattern is matched with the
closest TOF from the simulated ToF (which is the same for
all the GSAS-II generated diffraction patterns). Finally, the
intensities, I(x), for the experimental and Bragg profiles are
clipped to the [0,1] range. Examples of the pre-processing of

experimental data, including the background estimation and
the processed experimental diffraction pattern, are included
in Figure 6 (top row) for the three first experimental data
samples.

2) Model Performance: Table IV and Table V summarize
the performance on the experimental data. Figure 6 (center
and bottom rows) shows the comparison of the three first
experimental data samples with the diffraction patterns gen-
erated from the predicted unit cell parameters.

Table IV: MSE: Class Conditional – Experimental Data.

Model MSE
Symmetry RF (C1) Transfer (C2) Deep (C3)
Trigonal 6.30×10−2 1.91×10−1 6.75×10−2

Tetragonal 1.08×10−2 3.08×10−2 3.08×10−4

The main outcome of these experiments is that optimizing
the combination of cross entropy and MSE losses is more
effective than using integer class labels and optimizing

Authorized licensed use limited to: LANL Research Library. Downloaded on October 12,2021 at 23:35:20 UTC from IEEE Xplore.  Restrictions apply. 



1155

Table V: MSE: Integrated Models – Experimental. Deep learning
based models predict experimental parameters with more accuracy
than RF

Model MSE
RF (I1) 1.17×10−1

Multitask (I2) 1.23× 10−3

CAENN (I3) 2.00×10−3

the MSE loss. This is mainly due to the fact that the
minimization of the cross entropy effectively maximizes the
likelihood of the classes predicted by the model, which is
not guaranteed for the minimization of the MSE loss over
integer labels.

VI. CONCLUSIONS

This paper demonstrates the viability of a data-driven
approach to the long-standing problem of determining mate-
rial structure from neutron scattering data. Existing methods
are extremely time-consuming and rely on the fidelity of
physics-driven forward models for accuracy. The alternative
presented here is fast, data-driven and less reliant on the
fidelity of the underlying physics. Using perovskite as an
example material sample, the paper reports an extensive
comparative study of the efficacies of multiple deep learning
ML models (and combinations thereof) in predicting its
structural parameters. The overall structure prediction task
involves the classification task of predicting the crystallo-
graphic class that the sample belongs to and the regression
task of predicting the unit cell lengths/angles corresponding
to that class.

In this context, we presented the performance results of
two types of ML models – class-conditional and integrated.
Class-conditional models learn the class followed by the
corresponding cell parameters in a sequence of two learning
tasks while the integrated models learn them both in a
single learning task. Multiple variants of these two broad
categories were trained using synthetically generated data.
These trained models were validated against experimental
data and good prediction accuracies were obtained. Overall,
we note that deep learning models benefit more from the
multi-task approach than RF models. For the integrated
models, we found that optimizing the combination of cross
entropy and MSE losses is more effective than using integer
class labels and optimizing the MSE loss, mainly due to
the fact that minimization of the cross entropy effectively
maximizes the likelihood of the classes predicted by the
model, which is not guaranteed for the minimization of the
MSE loss over integer labels. In future, multi-task networks
that can predict the crystallographic classes not studied in
this report will be trained in addition to exploring more
sophisticated transfer learning models capable of accurate
predictions on experimental diffraction patterns gathered
from a wider range of diffractometers.
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